

IGBT4 Modules

SKM 150GB12T4G

Target Data

Features

- IGBT4 = 4. Generation (Trench) IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$

Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 175 °C	T _{case} = 25 °C	220	Α		
		T _{case} = 80 °C	170	Α		
I _{CRM}	I _{CRM} = 3 x I _{CNOM}		450	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs		
Inverse D	iode					
I _F	T _j = 175 °C	T_{case} = 25 °C	180	Α		
		T _{case} = 80 °C	135	Α		
I _{FRM}	$I_{FRM} = 3 \times I_{FNOM}$		450	Α		
I _{FSM}	t _p = 10 ms; sin.	T _j = 175 °C	860	Α		
Module						
$I_{t(RMS)}$			500	Α		
T_{vj}			-40 + 175	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		4000	V		

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C				mA
V _{CE0}		T _j = 25 °C		0,8	0,9	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C				mΩ
		T _j = 150°C				$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,85	2,05	V
		T _j = 150°C _{chiplev.}		2,25	2,45	V
C _{ies}				9,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,58		nF
C _{res}				0,51		nF
Q_G	V _{GE} = -8V /+15V			850		nC
R _{Gint}	T _j = 25 °C			5		Ω
t _{d(on)}						ns
t _r	$R_{Gon} = \Omega$	V _{CC} = 600V		44.0		ns
E _{on}	$R_{Goff} = \Omega$	I _{Cnom} = 150A T _i = 150 °C		14,8		mJ ns
$egin{aligned} \mathbf{t}_{d(off)} \ \mathbf{t}_{f} \end{aligned}$	Goff 22	$V_{GE} = \pm 15V$				ns
E _{off}		GE		14,8		mJ
R _{th(j-c)}	per IGBT	1			0,2	K/W

SEMITRANS[®] 3

IGBT4 Modules

SKM 150GB12T4G

Target Data

Features

- IGBT4 = 4. Generation (Trench) **IGBT**
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications

- AC inverter drives
- **UPS**
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• Case temperature limited to T_c = 125°C max, recomm. $T_{op} = -40$... +150°C, product rel. results valid for T_i≤150°

Characteristics									
Symbol	Conditions	I	min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	$I_{Fnom} = 150 \text{ A}; V_{GE} = 0 \text{ V}$	T _j = 25 °C _{chiplev.}		2,2	2,5	V			
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		2,1	2,45	V			
V_{F0}				1,3	1,5	V			
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,9	1,1	V			
r _F				6	6,67	mΩ			
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		8	9	mΩ			
I _{RRM}	I _{Fnom} = 150 A	T _j = 150 °C				Α			
Q _{rr}						μC			
E _{rr}	V _{GE} = -15V			11,3		mJ			
R _{th(j-c)}	per diode				0,32	K/W			
Freewheeling Diode									
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_{j} = {^{\circ}C_{chiplev}}.$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$				V			
V_{F0}		T _j = °C				V			
r _F		T _j = °C				V			
I _{RRM}	I _{Fnom} = A	T _j = °C				Α			
Q _{rr}						μC			
E _{rr}						mJ			
	per diode					K/W			
Module									
L _{CE}				15	20	nΗ			
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C			0,35	mΩ			
		T _{case} = 125 °C			0,5	mΩ			
R _{th(c-s)}	per module			0,02	0,038	K/W			
M _s	to heat sink M6		3		5	Nm			
M _t	to terminals M6		2,5		5	Nm			
w					325	g			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

5 11-07-2007 SCH © by SEMIKRON