IGBT4 Modules #### **SKM 150GB12T4G** **Target Data** #### **Features** - IGBT4 = 4. Generation (Trench) IGBT - V_{CEsat} with positive temperature coefficient - High short circuit capability, self limiting to 6 x I_{CNOM} - Soft switching 4. Generation CAL diode (CAL4) ### **Typical Applications** - AC inverter drives - UPS - Electronic welders at f_{sw} up to 20 kHz ### Remarks • Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_i \le 150^\circ$ | Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified | | | | | | | |---|--|---------------------------|------------------|-------|--|--| | Symbol | Conditions | | Values | Units | | | | IGBT | | | | | | | | V_{CES} | T _j = 25 °C | | 1200 | V | | | | I _C | T _j = 175 °C | T _{case} = 25 °C | 220 | Α | | | | | | T _{case} = 80 °C | 170 | Α | | | | I _{CRM} | I _{CRM} = 3 x I _{CNOM} | | 450 | Α | | | | $V_{\rm GES}$ | | | ± 20 | V | | | | t _{psc} | V_{CC} = 600 V; $V_{GE} \le 15$ V; VCES < 1200 V | T _j = 150 °C | 10 | μs | | | | Inverse D | iode | | | | | | | I _F | T _j = 175 °C | T_{case} = 25 °C | 180 | Α | | | | | | T _{case} = 80 °C | 135 | Α | | | | I _{FRM} | $I_{FRM} = 3 \times I_{FNOM}$ | | 450 | Α | | | | I _{FSM} | t _p = 10 ms; sin. | T _j = 175 °C | 860 | Α | | | | Module | | | | | | | | $I_{t(RMS)}$ | | | 500 | Α | | | | T_{vj} | | | -40 + 175 | °C | | | | T _{stg} | | | -40 + 125 | °C | | | | V _{isol} | AC, 1 min. | | 4000 | V | | | | Characteristics $T_c =$ | | 25 °C, unless otherwise specified | | | | | |--|---|---|------|------|------|-----------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_{C} = 6 \text{ mA}$ | | 5 | 5,8 | 6,5 | V | | I _{CES} | $V_{GE} = 0 V, V_{CE} = V_{CES}$ | T _j = 25 °C | | | | mA | | V _{CE0} | | T _j = 25 °C | | 0,8 | 0,9 | V | | | | T _j = 150 °C | | 0,7 | 0,8 | V | | r _{CE} | V _{GE} = 15 V | T _j = 25°C | | | | mΩ | | | | T _j = 150°C | | | | $m\Omega$ | | V _{CE(sat)} | I _{Cnom} = 150 A, V _{GE} = 15 V | | | 1,85 | 2,05 | V | | | | T _j = 150°C _{chiplev.} | | 2,25 | 2,45 | V | | C _{ies} | | | | 9,3 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 0,58 | | nF | | C _{res} | | | | 0,51 | | nF | | Q_G | V _{GE} = -8V /+15V | | | 850 | | nC | | R _{Gint} | T _j = 25 °C | | | 5 | | Ω | | t _{d(on)} | | | | | | ns | | t _r | $R_{Gon} = \Omega$ | V _{CC} = 600V | | 44.0 | | ns | | E _{on} | $R_{Goff} = \Omega$ | I _{Cnom} = 150A
T _i = 150 °C | | 14,8 | | mJ
ns | | $egin{aligned} \mathbf{t}_{d(off)} \ \mathbf{t}_{f} \end{aligned}$ | Goff 22 | $V_{GE} = \pm 15V$ | | | | ns | | E _{off} | | GE | | 14,8 | | mJ | | R _{th(j-c)} | per IGBT | 1 | | | 0,2 | K/W | # SEMITRANS[®] 3 ### **IGBT4** Modules #### **SKM 150GB12T4G** **Target Data** #### **Features** - IGBT4 = 4. Generation (Trench) **IGBT** - V_{CEsat} with positive temperature coefficient - High short circuit capability, self limiting to 6 x I_{CNOM} - Soft switching 4. Generation CAL diode (CAL4) ## **Typical Applications** - AC inverter drives - **UPS** - Electronic welders at f_{sw} up to 20 kHz ### Remarks • Case temperature limited to T_c = 125°C max, recomm. $T_{op} = -40$... +150°C, product rel. results valid for T_i≤150° | Characteristics | | | | | | | | | | |----------------------|--|--|------|------|-------|-------|--|--|--| | Symbol | Conditions | I | min. | typ. | max. | Units | | | | | Inverse Diode | | | | | | | | | | | $V_F = V_{EC}$ | $I_{Fnom} = 150 \text{ A}; V_{GE} = 0 \text{ V}$ | T _j = 25 °C _{chiplev.} | | 2,2 | 2,5 | V | | | | | | | $T_j = 150 ^{\circ}C_{\text{chiplev.}}$
$T_j = 25 ^{\circ}C$ | | 2,1 | 2,45 | V | | | | | V_{F0} | | | | 1,3 | 1,5 | V | | | | | | | $T_j = 150 ^{\circ}\text{C}$
$T_j = 25 ^{\circ}\text{C}$ | | 0,9 | 1,1 | V | | | | | r _F | | | | 6 | 6,67 | mΩ | | | | | | | $T_j = 150 ^{\circ}\text{C}$
$T_j = 150 ^{\circ}\text{C}$ | | 8 | 9 | mΩ | | | | | I _{RRM} | I _{Fnom} = 150 A | T _j = 150 °C | | | | Α | | | | | Q _{rr} | | | | | | μC | | | | | E _{rr} | V _{GE} = -15V | | | 11,3 | | mJ | | | | | R _{th(j-c)} | per diode | | | | 0,32 | K/W | | | | | Freewheeling Diode | | | | | | | | | | | $V_F = V_{EC}$ | $I_{Fnom} = A; V_{GE} = V$ | $T_{j} = {^{\circ}C_{chiplev}}.$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$ $T_{j} = {^{\circ}C}$ | | | | V | | | | | V_{F0} | | T _j = °C | | | | V | | | | | r _F | | T _j = °C | | | | V | | | | | I _{RRM} | I _{Fnom} = A | T _j = °C | | | | Α | | | | | Q _{rr} | | | | | | μC | | | | | E _{rr} | | | | | | mJ | | | | | | per diode | | | | | K/W | | | | | Module | | | | | | | | | | | L _{CE} | | | | 15 | 20 | nΗ | | | | | R _{CC'+EE'} | res., terminal-chip | T _{case} = 25 °C | | | 0,35 | mΩ | | | | | | | T _{case} = 125 °C | | | 0,5 | mΩ | | | | | R _{th(c-s)} | per module | | | 0,02 | 0,038 | K/W | | | | | M _s | to heat sink M6 | | 3 | | 5 | Nm | | | | | M _t | to terminals M6 | | 2,5 | | 5 | Nm | | | | | w | | | | | 325 | g | | | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. 5 11-07-2007 SCH © by SEMIKRON